Molecular Characteristics of Repotrectinib That Enable Potent Inhibition of TRK Fusion Proteins and Broad Mutant Selectivity

Alexander Drilon,1 Dayong Zhai,1,3 Evan Rogers,2 Wei Deng,1 Xi Chen,1 Paul Sprengeler,1 Siegfried H. Reich,3 Brion W. Murray3

1Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY; 2Turning Point Therapeutics, 10628 Science Center Drive, Suite 200, San Diego, CA 92121; 3Wuxi Biortus Biosciences Co., Ltd., Jiangyin, Jiangsu, China

INTRODUCTION

- Chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) are treated with tyrosine kinase inhibitors (TKIs).
- TRK fusion proteins are targeted by TRK inhibitors.
- Repotrectinib (TPX-0005) is a broad-spectrum, multi-kinase inhibitor.

METHODS

- **Co-crystal structures of TPX-0005 bound to various TRK inhibitors**
- **Cell-based screening and in vivo tumor models**

RESULTS

- Repotrectinib demonstrates marked anti-tumor activity in xenograft tumor models harboring wild-type (WT) and mutant TRK.
- Repotrectinib is potent against the gatekeeper mutation (TRKA F589L) and activation loop mutation (DFG, TRKA TRK).

CONCLUSIONS

- Repotrectinib is highly potent against a wide variety of TRK mutations.
- Repotrectinib has been granted orphan drug designation for the treatment of patients with NTRK+ advanced solid tumors.

ACKNOWLEDGMENTS

- Employment/shareholder: Turning Point Therapeutics.
- Conflicts of interest have been disclosed.